

Expression of Interest

India – Sweden Collaborative Industrial Research & Development Programme 2025

Company Information

- 1. Company Name: Cal BioChemicals Pvt. Ltd
- 2. **Company Description**: Materials development company developing for sustainable building materials.
- 3. Country (India/Sweden): India
- 4. **Sector and subsector**: Sector: NanoMaterials Subsector: Construction Building Materials
- 5. Year Established: 2025
- 6. Company Website: www.calbiochemicals.com

Contact Information

- 1. First Name: Satish
- 2. Last Name: Reddy
- 3. **E-mail:** contact@calbiochemicals.com / dsatishreddy@hotmail.com
- 4. Phone Number: +91-703-694-4032

Proposed Area of Project/ Proposal: An patented innovative developed scalable process for production of Silica (SiO2) from Rice Hush (abundantly available in India agriculture waste), which can industrially scalable and can be applied in concreate/Cement to enhance properties at the same or below the current cost of cement.

Summary of the Proposed Project/Proposal:

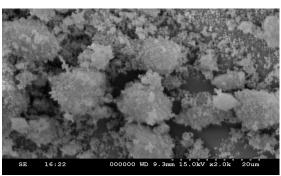
Patented Innovative Precipitated silica, in collaboration with IICT, from rice husk ash (RHA), produced

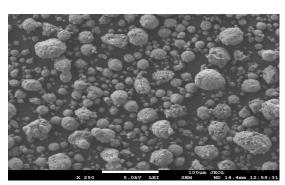
via hydrodynamic cavitation-assisted extraction, serves as a sustainable pozzolanic additive for building construction materials like concrete and cement composites.

KeyApplications

This high-purity silica (98% content, 120-240 m²/g surface area) reacts with calcium hydroxide in cement to form calcium silicate hydrate, densifying the matrix and boosting compressive strength by up to 30% at 10% replacement. It enhances durability by reducing permeability and water absorption by 30-50%, ideal for high-performance concretes in aggressive environments.

Our Innovative Process Adaptation


The file's eco-friendly method—RHA digestion in NaOH under cavitation (up to 60 minutes at low temperatures), followed by CO₂ precipitation—yields fine particles (0.2-0.6 microns) suitable for blending into cement at 5-15% by weight. Regeneration of NaOH from Na₂CO₃ via Ca(OH)₂ ensures zero-waste, cutting energy use versus quartz-derived silica.


Benefits Over Traditional Materials

- Cost-effective from abundant Indian RHA waste, avoiding high-energy sand fusion.
- Improves workability, reduces alkali-silica reactions when combined with silica fume.
- Lowers CO₂ footprint by 8-12 tons per ton of husk used, supporting green building standards.
- Cheaply available rice husk, an abundantly agricultural waste much less than cost of cost of cement raw materials.

Parameters	Commercail Grade Silica	Our Developed Silica	Test Method
Physical Appearance	Snow White Free Flowing	Snow White Free	
Powder	Powder	Flowing Powder	
Particle Size	3- 6 microns	0.2 microns	Particle Size Analyzer
Bet Surface Area	$140 - 170 \text{ m}^2/\text{g}$	$200 \text{ m}^2/\text{g}$	BET
Moisture Content at 105°C	3 TO 5 % max	3.62%	ISO 787-2
pH of 5 % Aqueous	6.5 TO 7.5	6.8	ISO 787-9
Suspension			
Bulk Density (Tapped)	0.25 -0.33 g/ml	0.1 g/ml	ISO 787-11
Moisture Absorption	200-250%	250%	IMS-WI-QC-003
Ignition Loss on Anhydrous	4-6%	5.2 %	ISO 3262-11
Basis, (1000°C, 2h)			

